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The nature of the scattering surfaces for thermal diffuse scattering (TDS) and the contribution of 
TDS to the intensity measured during a scan through a Bragg reflexion are considered for a model in 
which all phonons are assumed to have the same velocity in the crystal. For neutrons which are faster 
than this sound velocity the contribution is independent of the neutron velocity and can be calculated 
using the formulae derived for X-ray scattering. However, for neutrons which are slower than the 
sound velocity the contribution is a function of the neutron velocity and will be less than that given 
by the X-ray formulae. The behaviour of the TDS contribution as a function of the neutron velocity is 
considered for a type scan for which an analytical evaluation is possible and these considerations are 
extended to the conventional co and 0-20 types of scan. It is concluded that there is no discontinuity 
in the TDS contribution when the velocity of the neutrons is the same as that of the phonons, but that 
evaluation of a reliable correction is difficult for slower-than-sound neutrons for the conventional 
types of scan. These conclusions will also apply for a more realistic case for which the phonon velocities 
are not all identical. 

Introduction 

We have discussed the correction o f  measured inte- 
grated Bragg intensities for thermal diffuse scattering 
(TDS) in a number of earlier papers (Cooper & Rouse, 
1968; Rouse & Cooper, 1969, 1970; Cooper, 1970). In 
these papers we have, for the most part, considered the 
correction of X-ray diffraction data and we have 
touched only briefly on the corresponding correction 
of neutron diffraction data. 

The theory for X-ray scattering is simplified by the 
fact that the energy of the X-rays is much larger than 
the energy of the phonons. This means that for X-rays 
we can approximate the scattering surfaces concerned 
to the Ewald sphere and a straightforward integration 
of the scattering cross section over the volume scanned 
in reciprocal space is then possible. On the other hand, 
for neutron scattering the energy of the neutrons is 
comparable with the energy of the phonons and the 
scattering surfaces no longer approximate to the Ewald 
sphere. Moreover, the form of the scattering surfaces 
is strongly dependent on the velocity of the neutrons, 
as has been discussed by Seeger & Teller (1942) for a 
one-velocity model, in which all phonons are assumed 
to have the same velocity. The one-phonon TDS cross- 
section for such a model has been discussed by Waller 
& Froman (1952), who derived expressions for this 
cross-section in the two cases of the neutrons being 
faster or slower than the phonons. 

Willis (1970) has recently reconsidered this model, 
emphasizing the geometrical characteristics of the 
scattering of neutrons in reciprocal space and drawing 
certain conclusions in connexion with the correction 
of measured Bragg intensities for TDS. In particular 
he was able, from geometrical considerations, to draw 
certain qualitative conclusions concerning the TDS 
corrections for slower-than-sound neutrons. It is the 

purpose of the present paper to consider this one- 
velocity model in more detail and to derive expressions 
for the TDS intensity under normal experimental con- 
ditions. In addition, by considering a type of scan for 
which analytical evaluation is possible, it can be shown 
quantitatively how the correction necessary for the 
contribution of TDS to the Bragg intensities depends 
on the velocity of the neutrons. Although this simple 
model does not correspond to any real crystal it does 
provide a valuable insight into the behaviour of the 
TDS intensity near the reciprocal lattice point which 
can be applied in more realistic cases and it can be 
used to determine the conditions under which a reli- 
able TDS correction can be calculated for a given 
crystal. 

The correction of measured Bragg intensities for 
TDS using an isotropic model for the scattering has 
recently been reviewed by the author (Cooper, 1970). 
In the present paper I shall use essentially the same 
notation except that for the one-velocity model I shall 
replace Vj(q), the velocity of the phonon, by VL (see 
Seeger & Teller, 1942) and in order to avoid confusion 
I shall consider the cross-section as a function of the 
wave-vector K, being the displacement of the termina- 
tion of the wave-vector of the scattered neutron from 
the reciprocal-lattice point, rather than as a function 
of the wave-vector q of the created phonon (see Fig. 1). 
(The wave-vector q is - K  for a created phonon and 
+ ~ for an annihilated phonon.) 

One-velocity scattering surfaces 

The nature of the scattering surfaces for one-phonon 
scattering for a one-velocity model has been discussed 
by Seeger & Teller (1942), who show that the shape 
of these surfaces is defined by/~, the ratio of the phonon 
velocity to the neutron velocity, Vn. 
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The changes in momentum and energy of the neu- 
tron are, respectively, 

+_ @s=lp~l-lpsl  (1) 

dEn= VnAps (2) 

where Pl and ps are the momenta of the incident and 
scattered neutrons respectively and we assume that 
Izlpsl < Ip~l. 

The conditions for scattering defined by equations 
(1) and (2) can be written in terms of the wave-vectors 
k0 and k, for the incident and scattered neutron re- 
spectively, as 

zfp~_ Ik01-1kl _ VL _fl (3) 
eL IKI v .  

where pL is the momentum of the phonon and K is the 
vector: 

g = k - k 0 - 2 m  (4) 

and 2nx is the appropriate reciprocal-lattice vector. 
Equation (3) defines a surface such that for any 

point on the surface the ratio of the distance of that 
point to the Ewald sphere to that of the point to the 
reciprocal-lattice point is t ,  the ratio of the phonon 
velocity to the neutron velocity. One-phonon scat- 
tering can only occur for scattered neutrons having 
wave-vectors k terminating on this surface. 

Since only phonons with small wave-vectors con- 
tribute appreciably to the scattering we can approxi- 
mate the Ewald sphere in the vicinity of the reciprocal- 
lattice point to a plane. Under these conditions the 
scattering surface will have the following properties. 

I1 

A I ~ . . . .  ~ - ~ 0  

Fig. 1. Vector diagram in reciprocal space for a one-phonon 
scattering process involving loss of neutron energy and 
creation of a phonon. I< is the vector from the reciprocal 
lattice point P to the end of k, the wave-vector of the scat- 
tered neutrons, s is the vector from P to the point at which 
the direction of k (unit vector n) meets the Ewald sphere 
and s, and s± are the components of s parallel to n and 
perpendicular to n respectively. For a scattering process 
involving gain in neutron energy and the annihilation of a 
phonon the diagram would be similar except that k and 2~zx 
would both terminate outside the Ewald sphere. 

For faster-than-sound neutrons (fl < 1) the scattering 
surface is a hyperboloid of two sheets, one on each 
side of the Ewald sphere. One sheet corresponds to 
phonon creation (k<k0) and the other sheet corre- 
sponds to phonon annihilation (k>k0); both these 
processes will occur simultaneously. As fl goes to unity 
the surface becomes a paraboloid and for slower-than- 
sound neutrons (fl > 1) it is an ellipsoid. For fl > 1 the 
scattering corresponds to phonon creation only or to 
phonon annihilation only, depending on which side 
of the Ewald sphere the reciprocal-lattice point is. 

Willis (1970) has discussed these geometrical prop- 
erties in some detail and has given diagrams of scat- 
tering surfaces for fl=½ and fl=2, corresponding to 
neutrons much faster or much slower than sound re- 
spectively. To illustrate the dependence of the scatter- 
ing surfaces on the value of fl three further diagrams 
are given here: Fig. 2(a) and (b) show the form of the 
scattering surfaces for fl values close to unity, viz. -~ 
and ~-~, for various positions of the Ewald sphere with 
respect to the reciprocal-lattice point and Fig. 3 shows 
the form of the scattering surface for a single position 
of the Ewald sphere, for various values of ft. For 
clarity Fig. 2(a) and (b) have been drawn with respect 
to a stationary Ewald sphere and considering the re- 
ciprocal-lattice point to move with respect to this. 

The one-phonon scattering cross-section 

(a) Faster-than-sound neutrons (fl< 1) 
We can rewrite the one-phonon scattering cross- 

section for phonons with wave-vector q [Cooper, 1970, 
equation (19)] as a function of K: 

( d--~ad(~-~-) - NQ2 k ~ Ei(q) +- ½h°oi(q) 
1 2m k0 IJj(K)l~o~(o3-Iaj(Q)lZ (5) 1==1 

where N is the number of unit cells, each of mass m, 
Q is the scattering vector ( = k - k 0 ) ,  Ej(q) and cos(q) 
are the energy and frequency respectively of the j th 
mode with wave-vector q, Gj(Q) is the 'structure factor 
for one-phonon scattering' and IJj(K)I is the Jacobian 
which can be expressed as 

k.VL 
IJj(K)I = 1 + Ikl V~ " (6) 

For low-frequency modes, which provide the major 
contribution to the cross-section, the structure factor 
G is equal to the structure factor for Bragg scattering 
F multiplied by cos ~j(q), where ~j(q) is the angle be- 
tween the scattering vector and the polarization direc- 
tion of the mode concerned: 

G:(Q) = F(Q) cos ctj(q). (7) 

For a one-velocity model we can immediately sum the 
cross-section over the three low-frequency acoustic 
modes and so rewrite equation (5) in the form: 

dtr(K) ~ _ NQ 2 knT 
~ / 1  2mt¢ 2 [F(Q)IE IJ(K)IV£ (8) 
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assuming also that k"~ko and that we are considering 
only the classical region for which each mode has an 
energy kBT, where kB is the Boltzmann constant and 
T is the absolute temperature. 

For a given direction of k, which we can define by the 
unit vector n, there will be two values of K for which 
one-phonon scattering of faster-than-sound neutrons 
will occur. It can be shown (Waller & Froman, 1952) 
that the total scattering cross-section for these two 
contributions is: 

da(ko, n) ~ NQ2IF(Q)2IkBT 
-d~ ] I -  msZV~ 

(9) 

where s = l k 0 ] n - k 0 - 2 n x ,  i.e. the vector from the reci- 
procal-lattice point to the point at which the direction 
of the wave-vector of the scattered neutron crosses the 
Ewald sphere. For a scan through a reciprocal-lattice 
point s is therefore a vector defining the displacement 
from the Bragg condition. 

We may note that, although the contributions from 
the individual Ks are dependent on the neutron velocity, 
the total cross-section, given by equation (9), is in fact 
independent of the neutron velocity and has an iden- 
tical form to the corresponding result for X-ray scat- 
tering, for which K1 = K2 = s. 

It is convenient to rewrite equation (9) in the form: 

da(s) _ (10) 2a0 
dO ]i  s 2 

where 

NQ2IF(Q)I2kBT (11 ) 
ao = 2m VL 2 " 

(b) Slower-than-sound neutrons (fl> 1) 

For slower than sound neutrons the scattering sur- 
face is an ellipsoid on the same side of the Ewald 
sphere as P. Summation of equation (8) over the two 
K values for which scattering can occur for a given n 
then gives a total cross-section: 

da(s) ~ 20"0 fl (12) 
dO ],  = -fi -V l - ( f l z -  i ) (s~Js ~t) 

(see Waller & Froman, 1952) where s± and st, are the 
components of the scan vector s, perpendicular to n 
and parallel to n respectively. 

Since fl> 1 the cross section can be finite only for 
s± < b, where 

b=(s±)max=St, IVfl ~ -  1 , (13) 

the semi minor axis of the ellipsoid. 
Hence, for a given s~j, the TDS is restricted to a 

limited range of Sx values, corresponding to the size 
of the ellipsoid. For small g it can be shown that the 
semi-angle subtended by the ellipsoid at the detctor is 

c~ = sin 208.60/l/fl-2--[ (14) 

(see Lowde, 1954) where 0n is the Bragg angle and 

c50 is the angle through which the crystal has been 
rotated from the Bragg setting. 

TDS intensity 

For a given setting of the diffractometer the total TDS 
intensity will be that given by integrating the cross- 

\ 

? 

(a) 

(b) 

Fig. 2. The form of the scattering surfaces for one-phonon 
scattering of neutrons for various positions of the reciprocal- 
lattice point P with respect to the Ewald sphere and for 
various values of p: (a) fl=~, and (b) fl= 1__~. The scattering 
surfaces are numbered to correspond with the appropriate 
position of P. 
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section over the probability function corresponding to 
the resolution of the instrument (see Cooper & 
Nathans, 1968a, 1968b). Under normal circumstances 
the major contribution to the resolution will arise from 
the finite aperture of the detector and in the present 
analysis we shall therefore consider the resolution 
function to be unity over the solid angle seen by the 
detector at a given setting and zero elsewhere. Neglect 
of the other contributions to the resolution will not 
affect the conclusions which can be drawn from the 
analysis. 

(a) Faster-than-sound neutrons (fl < 1) 
We have seen that the one-phonon scattering cross 

section for faster-than-sound neutrons is identical in 
form to that derived for X-rays. The total one-phonon 
scattering for a given setting is thus obtained by inte- 
grating equation (9) over all s vectors from the recip- 
rocal-lattice point which terminate on the part of the 
Ewald sphere seen by the detector at that setting. 
Hence the total one-phonon intensity measured during 

1 / 1 1  

- -  - -  - -  0 

1 / 1 1  

~. j  ~J 

Fig. 3. The form of the scattering surfaces for one-phonon 
scattering of neutrons for a given position of the Ewald 
sphere with respect to the reciprocal-lattice point P for 
various values of ft. 

a scan through a Bragg reflexion is given by integrating 
equation (9) over the volume in reciprocal space for 
which elastic scattering can be detected during the 
scan. Methods available for carrying out this inte- 
gration have been discussed elsewhere (see e.g. Cooper, 
1970) and the results will take the same form as for 
X-ray scattering. 

(b) Slower-than-sound neutrons (fl > 1) 
For slower-than-sound neutrons the cross-section is 

a more complicated function of s and depends also on 
the velocity of the neutrons. Scattering will only occur 
within a region subtending a cone of semi-angle c~, 
given by equation (14), at the detector, i.e. the cone 
subtended by the ellipsoidal scattering surface. The 
observed TDS is therefore very critically dependent 
on what part, if any, of the ellipsoid is seen by the 
detector. 

We have seen that the size of the ellipsoid decreases 
as fl increases and that the ellipsoid contracts onto the 
Bragg peak as the displacement from the Bragg setting 
decreases. Hence there will be a finite range of scan 
over which the whole of the ellipsoid is seen by the 
detector. If we integrate equation (12) over the whole 
of the ellipsoid we obtain an integrated intensity of 

IN=ao 4~ tanh -1 (1/fl) (15) 

(see Lowde, 1954). 
We may note that this expression is independent of 

the displacement from the Bragg setting. Hence we 
have the result that, if fl is sufficiently large for the 
whole of the ellipsoid to remain within the aperture of 
the detector throughout the scan, the TDS intensity 
remains constant. The normal background correction 
will then remove the whole of the TDS intensity and 
no further correction will be necessary. 

If fl is close to unity the ellipsoid will be larger for a 
given displacement from the Bragg setting (see Fig. 3) 
so that the ellipsoid may rapidly extend beyond the 
region seen by the detector. Thus the TDS intensity 
will remain constant over a small angular range only 
and the intensity will then decrease as an increasing 
fraction of the ellipsoid extends beyond the aperture 
of the detector. Hence the relative contribution of 
TDS to the background-corrected Bragg intensity will 
be the same as for X-rays for fl < 1 but will fall to zero 
in a region offl greaterthan 1. In the following sections 
we shall consider the TDS contribution for particualr 
types of scan in order to determine how the TDS inten- 
sity depends on the value of fl and the parameters of 
the scan. 

Types of  scan 
We shall consider three types of scan through a 

Bragg reflexion: an co scan, a 0-20 scan and a perpendic- 
ular (_1_) scan, in which the end of the scattering vector 
for elastic scattering moves perpendicular to the Ewald 
sphere. These scans are illustrated in Fig. 4. At the 
Bragg setting the reciprocal-lattice point P lies on the 
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Ewald sphere. If AE is the vector in the same direction 
as the wave-vector of the scattered neutrons and termi- 
nating on the Ewald sphere, E, then coincides with P. 
During a scan E will move along the lines indicated: 
to E0 for a perpendicular scan, /71 for an co scan and 
E2 for a 0-20 scan. A will also move perpendicular to 
OA, but for small 50 we can ignore the movement of A. 

The apparent displacement of the centre of the 
ellipsoid from the centre of the detector aperture will 
correspond to the component of the displacement of 
E from P, normal to AP, viz. 

for an co scan, 

dl =EoE1 =2k  sin 2 0 60 (16a) 

for a 0-20 scan, 

dE =EoEz = - 2 k  cos 2 0 60 (16b) 

and for a _1_ scan, 
d0=0 .  (16c) 

For a rectangular aperture in which the Bragg reflexion 
is centred the detector will accept scattering within 
horizontal and vertical angles of + v and + w respec- 
tively with respect to the direction of the Bragg 
reflected beam. Hence for a given displacement from 
the Bragg setting the TDS intensity is given by inte- 
grating equation (12) over s± values lying within the 
vertical limits + kw and the horizontal limits: 

- 2k sin z 0 50 + kv for an co scan, 
2k cos z 0 60 + kv for a 0-20 scan, 

and 
+ kv for a _1_ scan. 

The intensity will be constant as long as the whole of 
the ellipsoid is seen by the detector, so that the condi- 
tion for constant intensity is that the short axis of the 
ellipsoid [equation (13)] plus the displacement of the 
centre should be less than the maximum displacement 
accepted by the aperture, i.e. 

50 < w/fl  z -  1 / sin 20 (17) 

and 

60=v/[2 sin 2 0+(s in  20]f lV~ - 1)] for an co scan 
(lSa) 

60=v/[2 cos z 0+(s in  2 0 / 1 / ~ -  1)] for a 0-20 scan 
(18b) 

or 

60 <vflV~-l /s in20 for a _l_ scan.  (18c) 

Outside these ranges of 60 the detector will not see 
all the ellipsoid and intensity will be lost. The range 
is clearly largest for a perpendicular scan, for which 
the centre of the ellipsoid remains stationary with 
respect to the aperture of the detector. The change in 
the detector aperture for this type of scan is 

A(20) =2  sin 2 0 . 6 0  (19) 

so that we can represent this scan as a 0-(sin 2 0)20 
scan. This is not normally a straightforward type of 
scan to use in practice but we shall see that its con- 
sideration allows an analytical determination of the 
TDS intensity observed during a scan to be made if an 
appropriate aperture is used. 

Rectangular aperture 
The integrated intensity for slower-than-sound neu- 

trons is given by equation (15) until the displacement 
from the Bragg setting becomes large enough for the 
ellipsoid to extend beyond the detector aperture. It 
then becomes necessary to integrate equation (12) only 
over those values of s .  which are seen by the detector. 

If the ellipsoid is centred, the intensity obstructed 
by one vertical edge of the aperture for a given s~ 
(> kv) is 

0--2 e SCAN 

! 
(a) 

 ISCAN  

(b) 

\ 

\ 
\ 

Fig. 4. Diagram in reciprocal space showing how the termina- 
tion of the wave-vector for elastically scattered neutrons ac- 
cepted by the detector moves during various types of scan 
through a Bragg reflexion. (a) General vector diagram. (b) 
Enlargement of the area close to the reciprocal- lattice point, 
showing also an ellipsoidal scattering surface of semi minor 
axis b. 
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2 fi2ns± 
a l N =  s-~, x { 1 -t- ( s2 /s  ,, 2)} k~ 1 - {(f12- 1) sm2/s ,,2} 

sec-l(s±/kv) 
x . (2o) 

integration of equation (12) is possible, viz. a perpen- 
dicular scan with a circular aperture. 

Perpendicular scan with a circular aperture 

This must be integrated over s± from kv to (S±)max to 
give the total obstructed intensity 

2 4fix sec -1 
AIN =a0 kv 

(1 + x 2 ) 1 / 1 - ( ~ 2 - 1 ) x  '~ 
. ]  (S~)maxl/)~'-- 1 

where x =s~Js,. 
This analysis can be extended to the case of an 

ellipsoid displaced horizontally from the centre of the 
aperture and obstructed by any part of the rectangular 
aperture. The intensity for such a case is 

IN = 4ncr0 tanh-l(1//~) 

I "' 4fix sec-l(x/?x)dx 
-O'o (1 + x2)V1- (~ 2-1)x  2 Yl 

I ~2 4fix sec-X(x/y2)dx 
- ~ 0  ,~ (1 + ~ ) 1 / 1 - ( / ~ -  1)x~ 

I ", 4px sec-~(x/~)dx 
-2o'0 (1 + x 2 ) g l - ( f l  2 - 1 ) x  z 

I "" 4fix[re~2 + sec-l(x/ex)]dx 
-Cro (1 + xZ)] /1 - ( /32-1)x  z 

i x 4 n fl x d x  
-a0  ,, (1 +xa ) l /1 - ( f l z -  1)x 2 (22) 

where the acceptance angles of the aperture are+ v 
horizontal and + w vertical, d is the horizontal dis- 
placement of the ellipsoid from the centre of the aper- 
ture, 

k v - d  k v + d  

?x-- Vflz_l(sAZmax ?2 = V/3Z_l(s_0Zmax 

]/(kv + d) 2 + (kw) 2 

~ =  v (--~-~_ ~) ~)~-7~x 
1/ (kv -  d)2 + (kw)2 

and 
kw 1 

X =  I/P'/-"2-1 (23) 

provided that these values are less than X. If any of 
these values are greater than X the appropriate 7, cf or 
e must be replaced by X. 

It is clear that numerical methods are necessary to 
evaluate equation (22) and that such a procedure will 
be necessary for every individual example. In order to 
obtain some quantitative results which are readily 
applicable to a range of experimental conditions we 
shall therefore consider a model for which analytical 

(a) Intensity at a given setting 
For slower-than-sound neutrons the size of the ellip- 
soid will depend on ~0, the displacement from the 

x)  (21) 
dx 

Bragg setting, but if a perpendicular scan is used it 
will remain centred in the aperture. If a circular aper- 
ture is used the intensity will remain constant until 
the ellipsoid first fills the aperture, after which the 
intensity will decrease. 

If the angular radius of the aperture is v0 then the 
intensity is 

IN=4nao tanh -1 (1/fl) (24) 

for (sx)max < kvo, and 

IN=4nao[tanh -x (l/fl)-tanh-X (V1--~-/fl)] (25) 

for (sx)max > kvo and 7o=kvo/(S±)max. 
We can rewrite equation (25) in terms of JO: 

IN =4rca0 [tanh-1 (fl) 

( tl/1- sin2 20(c~0)2 ] (26) 

or in terms of s, :  

IN =41ra0 [tanh-1 (~)  

- tanh-~ { (~ )  V l - ( f l z -  1) ( -~°)  2}] . (27) 

For convenience we shall consider the intensity as a 
function of s,, bearing in mind that this is a function 
of 20. 

The one-phonon intensity for slower than sound 
neutrons is constant for scans up to s, =kvo Vfl 2 - 1 ,  
after which the intensity decreases as s, increases. 
Hence, for fl close to unity the intensity is constant 
only over a very small angle and is large over this 
angle. As fl increases the peak intensity falls and the 
range over which it remains constant increases. We 
shall consider as examples the cases of fl = 1.2, 2 and 
4, putting 

s, = f k  voV-~ 2 - 1  (28) 
and 

1N =4rca0[N]. (29) 

Values of s ~/(kvo) and N are given for various values 
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o f f  in Table 1 and N is also shown as a function of 
s it/(kvo) in Fig. 5. 

Table 1. Values of  s,/(kvo) and N for various values 
o f f for slower-than-sound neutrons 

fl=l.2 fl=2 
f s, [(kvo) N s ,,/(kvo) N 

1.0 0.663 1.199 1-732 0.5493 
1.01 0.670 1.081 1.749 0-4792 
1.05 0.696 0.939 1.819 0-3956 
1.1 0.730 0.835 1.905 0.3379 
1.2 0.796 0-701 2-078 0.2656 
1.4 0.929 0-532 2.425 0.1840 
1.6 1-061 0.423 2.771 0.1374 
1-8 1.194 0.345 3.118 0.1068 
2.0 1.327 0.288 3.454 0.0857 
2.4 1.592 0.209 
3.0 1.990 0-138 
4.0 2.653 0.081 
6.0 3.980 0.037 

fl=4 
sn/(kvo) N 
3"873 0"2554 
3"912 0"2061 
4"067 0"1791 
4"260 0"1509 
4"648 0"1163 

For comparison we may consider the same situation 
for faster-than-sound neutrons (fl < 1), for which the 
intensity is, from equation (10), 

~koo 2zcs~_(dsi) 
I~ =2o"01o s2 

=2zca0 log[1 + (kvo/s,)2]. 

(30a) 

(30b) 

We can then write equation (30 b) in the form 

IF = 4rca0[M] (31) 

and compare the values of M, given in Table 2, directly 
with those of N for slower-than-sound neutrons. M 
is also plotted in Fig. 5 for comparison. We may note 
that, although the peak intensity decreases rapidly as 
fl increases (fl > 1), the intensity is larger than that for 
faster-than-sound neutrons towards the end of the 
constant region and beyond. The intensity integrated 
over a scan will therefore not fall as rapidly as the peak 
intensity. 

Table 2. Values of  M for various values of  s,/(kvo) 
for faster-than-sound neutrons 

s,,/(kvo) M s,/(kvo) M 
0"2 1"829 1"0 0"396 
0"5 0"804 1"5 0"184 
0"6 0"664 2"0 0"116 
0"7 0"556 2"5 0"074 
0"8 0"470 3-0 0"052 
0"9 0"402 3"5 0"040 

(b) Intensity integrated over scan 
We shall consider a scan from the Bragg setting out 

to s, =so. The total one-phonon intensity integrated 
over this scan for faster-than-sound neutrons is then, 
from equation (30b), 

I s° Is=2z~o'o log[1 +(kvo/s~l) 2] (ds,) (32) 
o 

=2zccr0s0 [log (1 + l IT  2) + (2]T) tan-aT] (33) 

where T=so/(kvo). 
For slower-than-sound neutrons the corresponding 

integrated intensity is, from equation (27), 

Io =4rCao tanh -1 (1/fl) (dsa,) 

"I v°l ,ds, 
(34) 

for So > kv0V~ -~-:1. 
For So <-kvo/fl 2 -  1 the intensity is given by the first 

term only, i.e. 

I0 =4zw0s0 tanh-t  (1/fl). (35) 

We shall therefore consider initially a scan out to the 
limit of the linear region (see Fig. 5) for which we can 
use equation (35). The corresponding intensity for the 
same scan range for faster-than-sound neutrons can be 
calculated from equation (33) and values of I0 and ls, 
divided by the factor 4nero kvo, are given in Table 3 
for various values of fl, together with the ratio So/(kvo) 
which indicates the length of the constant intensity 
scan. 

11 I ,  J,3-1.2 
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Fig. 5. The normalized TDS intensity for a perpendicular 
scan with a circular detector aperture as a function of 
s,(kvo) for various values of 13 for slower-than-sound neu- 
trons (full curves) and for faster-than-sound neutrons (bro- 
ken curve). 
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Table 3. Normalized intensities and constant intensity 
scan range parameters for  various values o f  fl 

fl Io Is Io/ Is so/ kvo 
1"001 0"170 0"184 0"924 0"045 
1"01 0"377 0"421 0"896 0"14 
1"02 0"464 0"525 0"884 0"20 
1"05 0"595 0"690 0"862 0"32 
1" 1 0"697 0"830 0"840 0"46 
1"2 0"791 0"974 0"812 0"66 
2"0 0"951 1"296 0"734 1"73 
4 0"989 1"443 0"685 3"87 
10 0"998 1"520 0"657 9"95 
c~ 1 "000 1 "570 0"637 co 

In the limit as fl ~ 1, Io/Is -+ 1, so that the intensity 
goes smoothly into that for f l<  1; as the constant 
intensity region vanishes the peak intensity goes to 
infinity. In the slow neutron limit fl -+ 0% lo/18 --+ 2~re 
as the intensity becomes infinite. 

The scan range over which the intensity remains 
constant is strongly dependent on/~ and it is therefore 
more realistic to consider a fixed scan range. For  con- 
venience we shall consider s~ =0.46 kvo, for which the 
intensity is constant iffl is greater than 1.1. Normalized 
intensities (divided by the factor 4rcaokvo) for this scan 
range are given in Table 4 and the value of lo/18 is 
plotted as a function of fl in Fig. 6. The intensity, 
integrated over the scan, falls rapidly for fl > 1.1, when 
the constant region extends beyond the limit of the 

1"0 '1 

/'o I 

T, I 

0"8 

0"6 

0"4 

0"2 

°o 4 
Fig 6. The normalized TDS intensity integrated over a per- 

pendicular scan with a circular detector aperture for a fixed 
scan range, so=0.46 kvo. Upper curve: intensity for a peak 
scan. Lower curve: intensity for a conventional background 
corrected scan. 

scan. It is therefore reasonable to suppose that the 
intensity for fl between 1 and 1.1 joins the two calcu- 
lated curves for/? on either side of this range smoothly, 
as indicated in Fig. 6. 

Table 4. Normalized integrated intensities for  a 
f ixed  scan range, s; =0.46 kvo, for various values o f  fl 

P Io ls lo/1, 
1.1 0-697 0.830 0-840 
1.2 0.551 0.830 0.664 
2.0 0.252 0.830 0.304 
4 0.118 0-830 0.142 

10 0-046 0.830 0.056 
100 0.005 0-830 0.006 
c~ 0"000 0"830 0"000 

Since the intensity remains constant over the whole 
scan for fl > 1.1, the TDS correction for a conventional 
background corrected Bragg intensity will then be zero. 
Hence the TDS correction must decrease rapidly 
between fl = 1 and fl = 1.1 for this particular scan range. 
We should note also that the scan range is a function 
of 20, So = k  sin 20.  AO, and if the value of fl is such 
that the constant intensity region does not fill the whole 
scan for some reflexions, the TDS correction may 
depend very critically on the value of 20. 

From equation (30b) we have that for faster-than- 
sound neutrons the integrated TDS intensity for a 
conventional background correction is 

IB = 2zca0s0 log[1 + (kvo/so) z] (36) 

so that for s0=0.46 kvo, IB=4rccr0 kvo (0.403). Hence 
the normalized background-corrected TDS intensity is 
0 .830-0 .403=0.427 and ( Is- IB) / Is=0.515.  For  this 
scan range, therefore, the background corrected TDS 
falls from 51.5 % of the value for the peak scan at 
fl = I to zero at fl = 1.1, as indicated in Fig. 6. (The 
exact shape of this curve has not been calculated.) It 
is clear from this behaviour that, since the scan vector 
So is a function of the Bragg angle, the magnitude of 
the TDS correction for values of fl in this region may 
vary rapidly from reflexion to reflexion. 

o~ and 0 - 2 0  scans 

For  any other type of scan, e.g. co or 0-20 scans, the 
ellipsoid will move off the axis of the detector so that 
the constant intensity range will be shorter and the 
intensity will fall more rapidly. Hence the range of  p 
for which the TDS correction is finite will be larger 
and more dependent on 20, since the rate at which the 
ellipsoid moves across the aperture also depends on 
0 [see equations (16)]. 

The displacement of the ellipsoid perpendicular to 
s,ris given from equations (16) as 

I dl = 2k(sin/cos)20.50 (37) 

where we must take sin 2 0 for an o9 scan and cos 2 0 
for a 0-20 scan. 
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The limit of the constant intensity range is there- 
fore given by 

2k(sin/cos)20 . ,40 + (k sin 20. ,40/~/fliZ--ll ) =kvo 
(38) 

so that 
VO ~ 1 

OA = ~(sin/cos)20 + (sin2 0/l/fl 5 - 1 )  " (39) 

As 60 increase beyond this limit the intensity will fall 
and will reach zero if the ellipsoid becomes completely 
outside the aperture, i.e. when 

/30 

"40'= 2(sin/cos)20_(si n20/fiVe-Z_] ) . (40) 

If the radius of the ellipsoid is increasing faster than 
the displacement the intensity will never fall to zero. 
Hence, the condition for the intensity to fall to zero is 

sin 20 < 21/~-:- 1 (sin/cos) 2 0 (41) 
which gives 

(cot/tan) 0 < ~/flz_ 1 (42) 

where the condition is on cot 0 for an o9 scan and on 
tan 0 for a 0-20 scan. 

As an example we can consider fl = 1.4 for which the 
intensity falls to zero for 0 > 45 ° for an co scan and for 
0<45 ° for a 0-20 scan. For larger values of fl the 
critical angles diverge, giving larger ranges for which 
the intensity falls to zero; for smaller values of fl the 
ranges become smaller. We should note that, unless 
the scan lies within the constant intensity range defined 
by equation (39) it may be rather difficult to calculate 
a value for the TDS correction. Moreover, it is clear 
that for typical scan ranges this condition will only 
be satisfied for limited angular ranges for o9 and 0-20 
scans, whatever the value offl(fl > 1). 

Conclusions 

(a) Faster-than-sound neutrons (fl < 1) 

For faster-than-sound neutrons the TDS correction 
has the same form as that for X-rays, provided that 
the conditions are such that the basic assumptions are 
still valid. We may therefore use the formulae derived 
for X-ray scattering for calculating the corrections in 
this case. 

(b) Slower-than-sound neutrons (fl > 1) 
For slower-than-sound neutrons the scattering sur- 

face is an ellipsoid and the TDS intensity is constant 
until the ellipsoid projects outside the detector aperture. 
For a perpendicular [0-(sin 2 0)20] scan the range over 
which the intensity is constant increases from zero at 
fl = 1 to infinity at fl = cx~. However, the peak intensity 
also decreases and the intensity integrated over the 
constant intensity region decreases, as fl increases from 
unity, and reaches the limit of 2/re times the intensity 

for faster-than-sound neutrons (fl< 1), integrated to 
infinity. If the scan is restricted to the constant inten- 
sity region the TDS correction for a conventional 
background-corrected scan will be zero. However, 
because the scan vector is a function of the Bragg 
angle, there will be a critical region of fl over which 
the correction will be extremely dependent on 0. This 
will be particularly so for o9 or 0-20 scans for which 
the ellipsoid is displaced from the centre of the aperture. 
For these scans the range of constant intensity will be 
smaller and the correction will be finite over a larger 
range of ft. Moreover, since the displacement of the 
ellipsoid is also a function of the Bragg angle there will 
be a limited range of 0 for which the ellipsoid remains 
within the detector aperture and the TDS intensity 
may fall to zero if both the displacement and fl are 
large. 

The basic conclusion is that there is no discontinuity 
in the contribution of thermal diffuse scattering to the 
intensity measured during a scan through a Bragg re- 
flexion when the velocity of the neutrons is the same as 
that of the phonons concerned (fl = 1). However, it is 
likely to be difficult to calculate accurate corrections 
in the region of fl slightly greater than 1. For large 
values of fl the TDS correction will be zero for a per- 
pendicular scan. However, for the conventional o9 and 
0-20 types of scan there will be ranges of Bragg angle 
for which the correction is finite and again its value 
will be difficult to determine. 

It should be emphasized that the above considera- 
tions are based on a one-velocity model, which assumes 
that all phonons concerned have the same velocity in 
the crystal. This is, of course, quite unrealistic, but the 
results obtained do indicate the behaviour of the TDS 
intensity as a function of neutron velocity and Bragg 
angle and can be used to predict conditions under 
which reliable TDS corrections can be calculated for 
a given crystal. For example, if a neutron wavelength 
is chosen such that the neutrons are faster than all 
possible phonons in the crystal, TDS corrections can 
be calculated using the formulae derived for X-ray 
scattering. The critical wavelength, corresponding to 
the maximum phonon velocity, will depend on the 
elastic properties of the crystal and will normally lie 
in the range 0.8 to 2 A. (In general this wavelength will 
be longer for soft materials than for hard materials.) 
The critical wavelength is thus normally in the range 
commonly used for Bragg intensity measurements. If 
accurate structure factors are required a neutron wave- 
length should therefore be chosen so that reliable TDS 
corrections can be calculated. 

It is a pleasure to acknowledge numerous discussions 
with my colleague K. D. Rouse. 
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Normal Probability Plot Analysis of Error in Measured and 
Derived Quantifies and Standard Deviations 
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Normal probability plot analysis is applied to independent sets of crystallographic structure factor 
measurements (F) and the derived coordinates (p). Differences between corresponding pairs of struc- 
ture factors (AF) in the two sets are examined in terms of their pooled standard deviations (oF) by 
plotting the ordered statistic tim = AF/aF against the expected normal distribution. Differences between 
pairs of coordinates (zip) are similarly examined in a f p =  Ap/ap half-normal probability plot. Both 
plots result in linear arrays of unit slope and zero intercept, for normal error distribution in the experi- 
ment and the model and correctly assigned standard deviations. Analysis of departures from this ideal, 
especially when both plots are considered together, provides detailed information of the kinds of error 
in fm and in fp. By inference, the kinds of error in F and trF as well as in p and ap can be deduced. The 
normal probability plot fiR= IFmeasl- IFeaael/aFmeas should ideally also be linear, with unit slope and 
zero intercept. Deviations from ideal provide considerably more information than the conventional 
R values. Analysis of fiR in combination with fm plots allows further specification of the error distribu- 
tion. Examples using these plots are given and discussed, based both on real and on simulated data. 

Introduction 

The association of a given measured quantity with a 
reliable estimate of the uncertainties in that quantity 
is of fundamental importance. The uncertainties in 
derived quantities, however, have often been given 
greater importance than those assigned to observed 
quantities. Propagation of error theory shows that 
estimates of these two kinds of uncertainty, later re- 
ferred to as the derived and the assigned standard 
deviations respectively, are functionally related (for a 
discussion, see Birge, 1939). The additional dependence 
of the least-squares refined parameters on the weights 
of the observations, obtained from the assigned stan- 
dard deviations, was implied by Gauss (1809). The 
assigned standard deviations are therefore critical, and 
should be estimated with care. Both these uncertainties 
should be capable of satisfying stringent post facto 
tests for validity. 

The increasing use in structural crystallography of 
diffractometers to measure structure factors (Fracas) 
has stimulated attempts at assigning experimental stan- 
dard deviations (aFmeas) to these quantities. Thus, 

* Present address: Mullard Research Laboratories, Redhill, 
Surrey, England. 

Busing & Levy (1957) proposed an expression for 
aFmeas that included both counting statistics and an 
empirical term proportional to the net count in the 
reflection. Similar proposals have subsequently been 
made by others. An objective assessment of o'Fmeas on 
the same scale as the Fracas is, however, possible only 
from the sum of all the independent variances entering 
the measurement. A method for evaluating these vari- 
ances has been given (Abrahams, 1964). The assigned 
aFmeas magnitudes are shown by model-dependent in- 
dicators to be close to their absolute scale (Abrahams, 
1969). 

In any model-independent procedure for testing the 
assigned standard deviations, it is necessary to measure 
at least two independent sets of Fmeas. The availability 
of two independent data sets, which need not be com- 
plete, allows the validity both of the derived as well 
as the assigned standard deviations to be tested by 
methods developed below. In addition, duplicate meas- 
surements on two different crystals of the material 
under study considerably increase the chances that the 
crystallographic results reported are indeed typical of 
that material. 

The results from a recent structural investigation 
(Keve, Abrahams & Bernstein, 1970), and a parallel 
simulated case, are used as examples to illustrate the 


